Challenge Data 2016-2017

21/10/2016 - 01/01/2018

Cluster actor faces from TV show
In this challenge, we provide you with faces extracted from 20 episodes of a TV show. The goal is to gather, for each movie, all the faces that belong to the same actor into homogeneous and complete c
Prédiction de l’intérêt des avis utilisateurs
PriceMinister is one of the leading marketplace of E-commerce in France, and is part of the Rakuten group, leader in Japanese market.  The goal of this challenge is to predict if a review of a user
Prédire la tendance de la production de pétrole brut.
Predict the Crude Oil production's trend base on the previous year Crude Oil data.

Prediction of trading activity within the order book
With past order book snapshots, try to predict if any trading activity will happen within the next second.
Prévision du risque de casse des canalisations d'un réseau
L'objectif de ce challenge est de prédire quelles canalisations ont le plus fort risque de casse dans les deux ans à venir.
Filtrage collaboratif au sein de la 3DEXPERIENCE Platform
The goal of the challenge is to build a recommender system for the social and collaborative application that is integrated within the 3DEXPERIENCE Platform (Dassault Systèmes). For each user, this sy

Prédiction de l'âge d'un sujet à partir de son activité cérébrale
The goal of this challenge is to predict the age of subject from his brain activity during deep sleep and the sequence of his sleep stages over a night.
Oze Energies - Optimiser la consommation d'énergies
This data challenge aims at introducing a new statistical model to analyze energy consumptions in several buildings using observations received from sensors. These observations are decomposed into: -
Prédire les clients qui ont réalisé des économies d’énergie.
EDF souhaite améliorer constamment l’expérience de ses clients, en particulier en les aidant à mieux comprendre et maîtriser leur consommation.

Prédire la qualité de l'air à l'échelle de la rue
We propose to predict the air quality level at the street level in several French cities. To reach this goal, we rely on an increasingly popular kind of model in the atmospheric science community call

Information